Trapping of CH_3O formed from $CO + H_2$

Baoshu Chen and John L. Falconer

Department of Chemical Engineering, University of Colorado, Boulder, CO 80309-0424, USA

Received 17 December 1992; accepted 10 March 1993

Methoxy formed on Al_2O_3 from ^{13}CO and H_2 coadsorption on Ni/Al_2O_3 was trapped by C_2H_5OH adsorption and temperature-programmed reaction (TPR). The presence of excess C_2H_5OH significantly increases the rate of $^{13}CH_3OH$ and $(^{13}CH_3)_2O$ formation. The $^{13}CH_3OH$ forms by the reaction of C_2H_5OH with $^{13}CH_3O$ on Al_2O_3 . In the absence of C_2H_5OH , TPR following ^{13}CO and H_2 coadsorption did not produce significant amounts of $^{13}CH_3OH$ or $(^{13}CH_3)_2O$.

Keywords: Methoxy; Ni/Al₂O₃; TPR; C₂H₅OH; trapping; ¹³CO

1. Introduction

Previous temperature-programmed reaction (TPR) studies of the interaction of CO and H₂ on Ni/Al₂O₃ catalysts indicated the presence of two types of reaction sites where CH₄ formed [1,2]. The more active sites were shown to be adsorbed CO on Ni, and the less active sites were concluded to be CH₃O, which formed on the Al₂O₃ support by a spillover process. The presence of CH₃O was conjectured based on the simultaneous formation of CO and H₂ and the H: CO stoichiometry during TPD. Methoxy formation from CO and H₂ has not been detected with IR on Ni/Al₂O₃, but it has been seen with IR on Pt/Al₂O₃ and Pd/Al₂O₃ [3,4]. Moreover, this CH₃O is hydrogenated to CH₄ during TPR on Pt/Al₂O₃ and Pd/Al₂O₃ [3,4]. On Ni/Al₂O₃, the low activity of CH₃O for CH₄ formation indicates CH₃O is not important during steady-state catalytic reaction. In contrast, it may be important on Pt/Al₂O₃ and Pd/Al₂O₃.

The similarity in the behavior of adsorbed CH₃OH and coadsorbed CO and H₂ for both hydrogenation during TPR and decomposition during TPD strongly suggests that CH₃O is present on Ni/Al₂O₃ [5,6]. To directly detect this CH₃O and to study its reaction properties, we trapped CH₃O with C₂H₅OH to form CH₃OH and ethers. Labeled ¹³CH₃O was formed by coadsorbing ¹³CO and H₂ at elevated temperature. Isotope labeling allows the source of the resulting products during TPR to be readily distinguished. Ethanol was used as a trapping reagent instead of CH₃OH because the resulting ethers were easy to distinguish. Kinnemann et al.

[7,8] reported that C_2H_5OH was an effective trapping reagent for detection of CH_3O on methanol synthesis catalysts. During TPD of C_2H_5OH on our Ni/Al_2O_3 catalyst [6] some carbon-containing products did not completely desorb by 950 K, apparently because surface carbon formed. Because adsorbed species were removed at lower temperatures during TPR and because fewer products formed, TPR was used for these trapping experiments instead of TPD. The TPR spectra for coadsorbed $^{13}CO+H_2$ were compared to TPR spectra of adsorbed C_2H_5OH and of coadsorbed ^{13}CO , H_2 and C_2H_5OH . The detection of $^{13}CH_3OH$ and $(^{13}CH_3)_2O$ in significant quantities when C_2H_5OH was adsorbed with $^{13}CO+H_2$ shows directly that $^{13}CH_3O$ formed from $^{13}CO+H_2$ at 385 K.

2. Experimental

Temperature-programmed reaction (TPR) experiments were carried out on a 5.7% Ni/Al₂O₃ catalyst at ambient pressure in a flow system that has been described previously [1,9,10]. A 100 mg sample of the catalyst (60–80 mesh) was supported on a quartz frit in a 1 cm o.d. quartz reactor, which was placed in an electric furnace. A 0.5 mm o.d. chromel—alumel shielded thermocouple was centered in the catalyst bed and connected to a temperature programmer to control the furnace to provide a constant heating rate of 1 K/s. The carrier gases (He and H₂) at atmospheric pressure flowed over the catalyst at a flowrate of 100 cm³/min (STP). Immediately downstream, the gas was analyzed with a UTI quadrupole mass spectrometer located in a turbopumped ultrahigh vacuum system.

For TPR experiments, the reduced and passivated catalyst was pretreated for 2 h at 773 K in H₂ flow and then cooled to room temperature. The ¹³CO was adsorbed for 30 or 60 min (0.05 cm³ pulses every 30 s) at 385 K in H₂ at 0.8 atm or 2.6 atm. In most experiments, following ¹³CO adsorption, gaseous C₂H₅OH was adsorbed at 300 K by evaporation of 2 µL from the tip of a liquid syringe. After the catalyst was held for 30 min at 300 K in He flow for equilibration, TPR was carried out by raising the catalyst temperature in H₂ flow at a rate of 1 K/s. In some experiments, following ¹³CO adsorption, TPR was carried out without C₂H₅OH exposure, and in some experiments C₂H₅OH was adsorbed without ¹³CO exposure. During TPR, CH_4 (m/z = 15), $^{13}CH_4$ (17), H_2O , C_2H_4 (26), CO, ^{13}CO (29), C_2H_6 (30), C₂H₄O (29,43), C₂H₅OH (31,46), ¹³CH₃OH (32,33), CO₂, ¹³CO₂ (45), $(^{13}\text{CH}_3)_2\text{O}$ (47,48), $^{13}\text{CH}_3\text{OC}_2\text{H}_5$ (60,61), and (C₂H₅)₂O (59,74), were detected. Mass 31 was corrected for the cracking fragment from ¹³CH₃OH, and the ratio of the remaining mass 31 and mass 46 signals was compared to the C₂H₅OH calibration to determine if ¹²CH₃OH (31) formed. To obtain ¹³CO spectra, the cracking fractions at mass 29 from ¹³CO₂, C₂H₆, ¹³CH₃OH, C₂H₄O, C₂H₅OH, and (13CH₃)₂O were subtracted from the mass 29 signals. The signals at mass 17 were corrected for H₂O cracking to obtain ¹³CH₄ signals, and the CH₄ signals were obtained by correcting mass 15 for cracking of ¹³CH₄, C₂H₆, C₂H₄O, and

 C_2H_5OH . Known volumes of pure gases or liquids were injected into the H_2 carrier gas, downstream of the reactor, to calibrate the mass spectrometer. The calibration factor for $(CH_3)_2O$ was used to estimate desorption rates of $(C_2H_5)_2O$, $^{13}CH_3OC_2H_5$, and $(^{13}CH_3)_2O$, and the calibration factor for CO at mass 28 was used to estimate C_2H_4O (mass 29) formation rates.

The 5.5% Ni/Al₂O₃ catalyst was prepared by impregnating Kaiser Al₂O₃ (A-201) to incipient wetness with an aqueous solution of nickel nitrate. After being dried in a vacuum oven for 24 h at 373–383 K, the catalyst was directly reduced in H₂ for 10 h at 773 K, and passivated with 2% O₂ in N₂ at room temperature. Weight loading was measured by inductively coupled plasma. The Ni dispersion of 1.7% was estimated by TPR of CO [6]. Ethanol (USP, 200 proof) was obtained from Midwest Grain Products Co., and the 13 CO (99.2% 13 C) was supplied by Isotec Inc.

3. Results

3.1. LOW ¹³CH₃O COVERAGE

Temperature-programmed reaction on the 5.7% Ni/Al₂O₃ catalyst is similar to that reported for other Ni/Al₂O₃ catalysts following CO adsorption at 300 K [5,11]. Two distinct CH₄ peaks were observed, due to hydrogenation of CO adsorbed on Ni (peak temperature (T_p) of 445 K) and hydrogenation of CH₃O that formed on the Al₂O₃ by spillover ($T_p = 546$ K). The amount of ¹³CH₃O was increased by adsorbing ¹³CO in H₂ flow (ambient pressure) at 385 K for 30 min, and fig. 1 shows the resulting spectra. The two ¹³CH₄ peaks were present at 463 and 533 K. Note that most of the ¹³CO was hydrogenated to ¹³CH₄ (110 µmol/g catalyst) and only a small amount of ¹³CO was seen. Water also formed during TPR and desorbed above 600 K. No significant amounts of (¹³CH₃)₂O and ¹³CH₃OH were observed. For this low dispersion catalyst the rate of methoxy formation on Al₂O₃ was slow during adsorption at 385 K and the Al₂O₃ surface was not saturated.

Fig. 2 shows the TPR spectra where the same adsorption procedure as for fig. 1 was repeated for 13 CO and H_2 , and the catalyst was then exposed to 2 μ L of C_2H_5OH (350 μ mol/g catalyst) in He flow. Note that C_2H_5OH , which adsorbs on Al_2O_3 , dramatically changed the 13 C product distribution during TPR. Less 13 CH₄ (91 μ mol/g catalyst) formed, and instead 10 μ mol 13 CH₃OH/g catalyst formed. The 13 CH₃OH desorbed in a single peak at 525 K in a shape that is almost identical to that for C_2H_5OH desorption. Some 13 CO and 13 CO₂ were also observed. In addition, a small amount of $(^{13}$ CH₃)₂O (1.5 μ mol/g catalyst) was seen in a single peak at 530 K (fig. 2b). The presence of coadsorbed C_2H_5OH dramatically increased 13 CH₃OH and $(^{13}$ CH₃)₂O desorption.

The coadsorbed C_2H_5OH was hydrogenated to CH_4 (fig. 2a) in a similar matter to the $^{13}CH_3O$, and this is discussed in detail elsewhere [6]. Some C_2H_6 , C_2H_4O ,

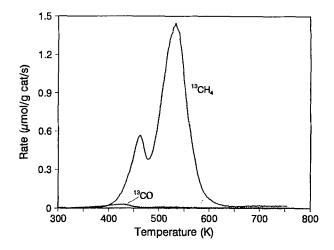


Fig. 1. TPR spectra for 13 CO adsorbed in H_2 flow (ambient pressure) for 30 min at 385 K on 5.7% Ni/Al_2O_3 .

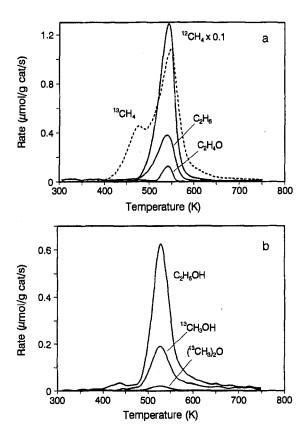


Fig. 2. TPR spectra for 13 CO adsorbed in H_2 flow (ambient pressure) for 30 min at 385 K followed by C_2H_5OH adsorption (2 μ L) at 300 K on 5.7% Ni/Al₂O₃.

and C₂H₅OH were observed, but 80% of the ¹²C formed ¹²CH₄. No significant amounts of ¹³CH₃OC₂H₅ and (C₂H₅)₂O were detected. Water formed during TPR, but is not shown in fig. 2 for clarity. The product amounts are listed in table 1. Within experimental accuracy all the injected C₂H₅OH adsorbed and was detected as products during TPR. Accurate exposure amounts could not be obtained with the liquid syringe.

As expected, when 2 μ L of C_2H_5OH was adsorbed alone, neither ¹³CH₃OH nor (¹³CH₃)₂O were observed during TPR. Ninety-two percent of the total ¹²C in C_2H_5OH appeared as ¹²CH₄ (685 μ mol/g catalyst), and the peak shape was the same as the ¹²CH₄ peak in fig. 2a. Some C_2H_6 and C_2H_4O were also observed at the same temperature as CH₄, but no significant amount of C_2H_5OH desorbed at this C_2H_5OH coverage in the absence of preadsorbed ¹³CO and H₂ [6]. At higher C_2H_5OH coverage (4 μ L exposure) C_2H_5OH desorbed.

3.2. HIGH ¹³CH₃O COVERAGE

An increase in the $^{13}\text{CH}_3\text{O}$ coverage, by longer exposure to ^{13}CO and at higher H₂ pressure (2.6 atm), increased the amplitude of the $^{13}\text{CH}_4$ signal during TPR. As shown in fig. 3, the high temperature $^{13}\text{CH}_4$ peak increased, and 251 µmol $^{13}\text{CH}_4$ /g catalyst formed. Small amounts of ^{13}CO (9 µmol/g catalyst), $^{13}\text{CO}_2$ (0.8 µmol/g catalyst), and ($^{13}\text{CH}_3$)₂O (<0.5 µmol/g catalyst) were detected. No $^{13}\text{CH}_3$ OH desorption was observed. When the catalyst was exposed instead to 1 µL of CH₃OH (250 µmol/g catalyst) in He flow at 300 K to obtain a similar coverage of CH₃O on Al₂O₃, the subsequent TPR exhibited the CH₄ (269 µmol/g catalyst) and CO (7 µmol/g catalyst) peaks that were similar to the $^{13}\text{CH}_4$ and ^{13}CO peaks in fig. 3.

Table 1	
Amounts of products (µmol/g catalyst) formed during T	PR on Ni/Al ₂ O ₃

Products	Amounts of products (µmol/g catalyst)				
	low ¹³ CH ₃ O coverage		high ¹³ CH ₃ O coverage		
	no C ₂ H ₅ OH	with C ₂ H ₅ OH	no C ₂ H ₅ OH	with C2H5OH	
12CH ₄	<1	587	<2	590	
¹³ CH ₄	110	91	251	161	
¹³ CO	3	6	9	7	
$^{12}C_{2}H_{6}$	_	21	_	21	
$^{12}C_{2}H_{4}O$	_	8	_	9	
¹³ CH ₃ OH	_	10	_	55	
¹² C ₂ H ₅ OH	_	42	_	55	
¹³ CO ₂	< 0.5	2	0.8	3	
$(^{13}CH_3)_2O$	_	1.5	< 0.5	6	
total 12C	<1	729	<2	760	
total 13C	113	112	261	238	

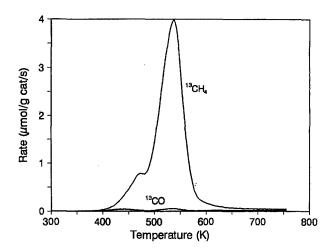


Fig. 3. TPR spectra for ¹³CO adsorbed in H₂ flow (2.6 atm) for 60 min at 385 K on 5.7% Ni/Al₂O₃.

Less than 1 μ mol (CH₃)₂O/g catalyst was obtained, and no CH₃OH desorption was detected.

Fig. 4 shows the TPR spectra obtained when the same $^{13}\text{CO} + \text{H}_2$ adsorption procedure used for fig. 3 was repeated, and the catalyst was then exposed to $2\,\mu\text{L}$ of $\text{C}_2\text{H}_5\text{OH}$ at room temperature. The rates of $^{13}\text{CH}_3\text{OH}$ and $(^{13}\text{CH}_3)_2\text{O}$ formation dramatically increased, and 55 μmol $^{13}\text{CH}_3\text{OH}$ and 6 μmol $(^{13}\text{CH}_3)_2\text{O}$ per gram catalyst were observed in single peaks at 515 K. The peak temperature and shape of the $^{13}\text{CH}_4$ spectrum are similar to those in fig. 3, but the $^{13}\text{CH}_4$ amount decreased by 90 $\mu\text{mol/g}$ catalyst to 161 $\mu\text{mol/g}$ catalyst. When ^{13}CO and ^{13}C coadsorption was followed by $2\,\mu\text{L}$ of CH_3OH exposure, similar results were obtained during the subsequent TPR. Significant amounts of $^{13}\text{CH}_3\text{OH}$ and ethers $((^{13}\text{CH}_3)_2\text{O}, ^{13}\text{CH}_3\text{OCH}_3, \text{and} (\text{CH}_3)_2\text{O})$ were obtained.

The distribution of ^{12}C -containing products from $C_2H_5\text{OH}$ hydrogenation at high $^{13}\text{CH}_3\text{O}$ coverage is similar to that at low $^{13}\text{CH}_3\text{O}$ coverage (table 1). Methane was the main product (590 µmol/g catalyst), and similar amounts of C_2H_6 (21 µmol/g catalyst), $C_2H_4\text{O}$ (9 µmol/g catalyst), and unreacted $C_2H_5\text{OH}$ (55 µmol/g catalyst) were detected. The total number of adsorbed molecules ($^{13}\text{CH}_3\text{O}$, $C_2H_5\text{O}$, and $C_2H_5\text{OH}$) is estimated to be $1.7\times10^{14}/\text{cm}^2$ of Al_2O_3 . Using $C_2H_5\text{OH}$ chemisorption at saturation coverage, Arai et al. [12] determined that the number of adsorption sites on Al_2O_3 was 2.0×10^{14} sites/cm².

4. Discussion

Trapping of CH₃O by C₂H₅OH is an effective means to show directly that CH₃O forms from coadsorption of CO and H₂ on Ni/Al₂O₃. The formation of sig-

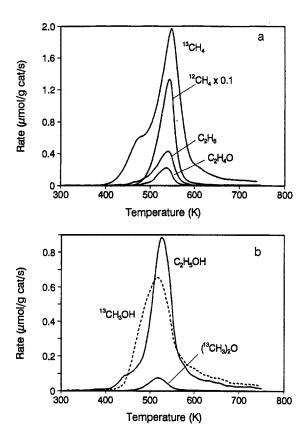


Fig. 4. TPR spectra for 13 CO adsorbed in H₂ flow (2.6 atm) for 60 min at 385 K followed by C_2H_5OH adsorption (2 μ L) at 300 K on 5.7% Ni/Al₂O₃.

nificant amounts of 13 CH₃OH and (13 CH₃)₂O when C_2 H₅OH was adsorbed following 13 CO and H₂ coadsorption on Ni/Al₂O₃ indicates that 13 CH₃O formed on the Al₂O₃ surface from 13 CO and H₂. The C_2 H₅OH is known to adsorb on the Al₂O₃ surface because essentially the same amount of C_2 H₅OH adsorption was observed on Al₂O₃ alone.

During CO and H₂ coadsorption at 385 K, CH₃O forms on Al₂O₃ by spillover, and CO also adsorbs on Ni. During TPR, some CO on Ni hydrogenated to form CH₄ in the lower temperature peak, and the remaining CO forms additional CH₃O on Al₂O₃ by spillover. Then CH₃O on Al₂O₃ is hydrogenated to form CH₄ at higher temperature (fig. 1). More CH₄ formed during TPR in fig. 3 than in fig. 1 because more CH₃O formed on Al₂O₃ because of the longer exposure time and the higher H₂ pressure. Even at the high CH₃O coverage, CH₃OH was not observed during TPR, probably because Ni/Al₂O₃ is not a CH₃OH synthesis catalyst.

On other Ni/Al₂O₃ catalysts and on Pt/Al₂O₃ catalysts, CH₃OH was not observed during TPR following CO and H₂ adsorption to saturation [13,14]. On

Pd/Al₂O₃, however, a small amount of CH₃OH, 1% of the total adsorbed CO, was detected during TPR at high CH₃O coverage [15]. Palazov et al. [4] observed CH₃O on a Pd/Al₂O₃ catalyst with IR, and proposed that CH₃OH formation was due to hydrogenation of CH₃O on Pd, though they did not detect CH₃O on Pd/SiO₂ under the same conditions. They suggested that CH₄ formed by hydrogenation of CH_xO, which formed on Pd by reaction of adsorbed CO and H or by reverse spillover of CH₃O from Al₂O₃. Methanol formed at high temperature and pressure from CO and H₂ at steady state on supported Pd [16], but at lower pressure and temperature CH₄ was the dominant product [4]. Anderson and Jen [17] analyzed the mobility of CH₃O and H and their reaction to form CH₄ on Al₂O₃ by using atom superposition and electron delocalization molecular orbital theory. They concluded that the reaction of CH₃O and H on Al₂O₃ to form CH₄ was more likely than CH₃OH formation.

4.1. ¹³CH₃OH FORMATION

Following ¹³CO and H₂ coadsorption, the adsorption of C₂H₅OH significantly increased the amount of ¹³CH₃OH formed during TPR (figs. 2 and 4). 9% of the ¹³C at low ¹³CH₃O coverage and 24% of the ¹³C at high ¹³CH₃O coverage was present in ¹³CH₃OH during TPR, and most of the remaining ¹³C-containing adsorbates were hydrogenated to form ¹³CH₄ during TPR. Similar effects were obtained when CH₃OH was coadsorbed instead of C₂H₅OH. Kinnemann et al. [7] and Chauvin et al. [8] used C₂H₅OH to identify a CH₃O intermediate on CH₃OH synthesis catalysts. They injected excess C₂H₅OH liquid (1 mL) into a bulb containing Cu–ZnAl₂O₄ or ZnAl₂O₄, which had been pretreated with a CO + H₂ mixture, and they detected CH₃OH by gas chromatography. They concluded that CH₃OH formed immediately at room temperature due to protonation of the CH₃O groups by C₂H₅OH [8]. Since ¹³CH₃OH desorbed above 400 K in the present study, the same reaction is possible:

$$^{13}\text{CH}_3\text{O} + \text{C}_2\text{H}_5\text{OH} \rightarrow ^{13}\text{CH}_3\text{OH} + \text{C}_2\text{H}_5\text{O}$$
.

The formation of ¹³CH₃OH may be a multi-step process in which C₂H₅OH first dissociates to form adsorbed H on weak basic sites (Al–O–Al). This H then reacts with adsorbed ¹³CH₃O, possibly at elevated temperatures (scheme 1). Previous IR studies [17,12] showed that C₂H₅OH decomposed on Al₂O₃ to form adsorbed C₂H₅O and H. Note that C₂H₅OH desorbs in a sharp peak at 530 K (figs. 2 and 4). Ethanol formation may also be attributed to the reaction of adsorbed C₂H₅O with H on weak basic sites. Spilled-over H, which forms by dissociative adsorption of H₂ on Ni and the spillover onto Al₂O₃, adsorbs on Al–O⁻ sites (strong basic sites) as OH. This H is unlikely to react with adsorbed ¹³CH₃O to form ¹³CH₃OH, since no significant amount of ¹³CH₃OH was observed during TPR following ¹³CO and H₂ coadsorption at 385 K [13,14].

4.2. ETHER FORMATION

The introduction of C₂H₅OH following ¹³CO and H₂ coadsorption at 385 K also increased the amount of (¹³CH₃)₂O formed during TPR. Dimethyl ether forms when CH₃OH decomposes on Al₂O₃ and Ni/Al₂O₃ catalysts [6,18–20], and two mechanisms have been proposed for its formation. Jain and Pillai [18] examined dehydration of alcohols over Al₂O₃ at steady state by changing the partial pressure of alcohols. They concluded that (CH₃)₂O formed via a bimolecular reaction between CH₃O on an acidic site and strongly adsorbed CH₃OH on a basic site. Similar models were developed by Padmanabhan et al. [21] and Knözinger et al. [22]. Matsushima and White [19] suggested that ether formed through the interaction of two adsorbed CH₃O. They observed that in the presence of gas-phase CD₃OD, the ether produced during thermal desorption from an Al₂O₃ surface on which CH₃OH had been preadsorbed, was primarily CH₃OCH₃. DeCanio et al. [20] did not observe physisorbed alcohol at the temperature where ether formed,

and they concluded that the reaction was between two alkoxide species and not an alkoxide and a molecularly adsorbed alcohol.

In the present study, $(^{13}CH_3)_2O$ formed during TPR following ^{13}CO adsorption in 2.6 atm H_2 at 385 K, although the amount of $(^{13}CH_3)_2O$ was less than 0.5 μ mol/g catalyst (table 1). Since no $^{13}CH_3OH$ was detected, $(^{13}CH_3)_2O$ formation may be due to the reaction between two adjacent $^{13}CH_3O$ species on Al_2O_3 , as described by DeCanio et al. [20]. Previous studies on Pd/Al_2O_3 [15] and Pt/Al_2O_3 [14] also detected $(CH_3)_2O$ formation during TPR following CO and H_2 coadsorption at 385 K to high CH_3O coverage.

Note that the amount of (¹³CH₃)₂O significantly increased when C₂H₅OH was introduced (table 1). The formation of (¹³CH₃)₂O is unlikely due to a coverage effect, because the total amount of ¹³CH₃O did not change. Instead, ¹³CH₃OH, which formed by the reaction between C₂H₅OH and ¹³CH₃O, may subsequently react with an adjacent ¹³CH₃O to form (¹³CH₃)₂O. Both reactions for (CH₃)₂O formation, CH₃OH+CH₃O and CH₃O+CH₃O, thus may occur during TPR following CO and H₂ coadsorption and C₂H₅OH adsorption on Ni/Al₂O₃. The reaction between CH₃OH and CH₃O may be faster than the reaction between two CH₃O. TPR of CH₃OH on Ni/Al₂O₃ produced CH₃OH and (CH₃)₂O when excess CH₃OH was adsorbed [6].

4.3. ETHANOL HYDROGENATION

Ethanol directly adsorbs on Al_2O_3 to form adsorbed C_2H_5OH and C_2H_5O species, which have been detected by IR [12,23,24]. The $^{12}CH_4$ peak is the result of C_2H_5O and C_2H_5OH hydrogenation. Ethoxy adsorbed on Al_2O_3 also decomposes to form C_2H_4 and C_2H_4O during TPR, and some C_2H_4 is hydrogenated to form C_2H_6 [25–27]. Kim and Barteau [28] also observed C_2H_4 and C_2H_4O products during TPD of C_2H_5OH on TiO₂. They proposed that C_2H_4O formed by α -H elimination and Al-O bond rupture of a C_2H_5OH species. The formation of C_2H_4 was attributed to α -H elimination and C-O bond rupture simultaneously [28].

5. Conclusions

Following ¹³CO and H₂ coadsorption at 385 K on Ni/Al₂O₃, introduction of C₂H₅OH dramatically increased the rates of ¹³CH₃OH and (¹³CH₃)₂O formation during TPR. In the absence of coadsorbed C₂H₅OH, no ¹³CH₃OH was detected. The ¹³CH₃OH formed by surface reaction between C₂H₅OH and ¹³CH₃O. The formation of ¹³CH₃OH and (¹³CH₃)₂O directly shows that ¹³CH₃O formed on the Al₂O₃ support following ¹³CO and H₂ coadsorption. Dimethyl ether formed by reactions both between ¹³CH₃O and ¹³CH₃OH and between two ¹³CH₃O species.

Acknowledgement

We gratefully acknowledge support by the National Science Foundation Grant CTS 90-21194.

References

- [1] P.G. Glugla, K.M. Bailey and J.L. Falconer, J. Phys. Chem. 92 (1988) 4474.
- [2] P.G. Glugla, K.B. Bailey and J.L. Falconer, J. Catal. 115 (1989) 24.
- [3] J.L. Robbins and E. Marucchi-Sous, J. Phys. Chem. 93 (1989) 2885.
- [4] A. Palazov, G. Kadinov, Ch. Bonev and D. Shopov, J. Catal. 74 (1982) 44.
- [5] B. Chen, J.L. Falconer and L. Chang, J. Catal. 127 (1991) 732.
- [6] B. Chen and J.L. Falconer, in preparation.
- [7] A. Kinnemann and J.P. Hindermann, *Proc. 10th Canad. Symp. Catal.*, Kingston, Ontario, 1986, ed. J. Downie, p.329.
- [8] C. Chauvin, J. Saussey, J.C. Lavalley, H. Idriss, J.P. Hindermann, A. Kinnemann, P. Chaumette and P. Courty, J. Catal. 121 (1990) 56.
- [9] K.B. Kester and J.L. Falconer, J. Catal. 89 (1984) 380.
- [10] J.A. Schwarz and J.L. Falconer, Catal. Today 7 (1990) 1.
- [11] B. Sen and J.L. Falconer, J. Catal. 117 (1989) 404.
- [12] H. Arai, Y. Saito and Y. Yoneda, Bull. Chem. Soc. Japan 40 (1967) 731.
- [13] B. Sen, J.L. Falconer, T.-F. Mao, M. Yu and R.L. Flesner, J. Catal. 126 (1990) 465.
- [14] R.L. Flesner and J.L. Falconer, J. Catal. 139 (1993) 421.
- [15] E. Hsiao and J.L. Falconer, J. Catal. 132 (1991) 145.
- [16] M.L. Poutsma, L.F. Elek, P.A. Ibarbia, A.P. Risch and J.A. Rabo, J. Catal, 52 (1978) 157.
- [17] A.B. Anderson and S.-F. Jen, J. Phys. Chem. 95 (1991) 7792.
- [18] J.R. Jain and C.N. Pillai, J. Catal. 9 (1967) 322.
- [19] T. Matsushima and J.M. White, J. Catal. 44 (1976) 183.
- [20] E.C. DeCanio, V.P. Nero and J.W. Bruno, J. Catal. 135 (1992) 444.
- [21] V.R. Padmanabhan and F.J. Eastburn, J. Catal. 24 (1972) 88.
- [22] H. Knözinger, K. Kochloefl and W. Meye, J. Catal. 28 (1973) 69.
- [23] R.O. Kagel, J. Phys. Chem. 71 (1967) 844.
- [24] R.G. Greenler, J. Chem. Phys. 37 (1962) 2094.
- [25] D. Bianchi, G.E.E. Gordes, G.M. Pajonk and S.J. Teichner, J. Catal. 38 (1975) 135.
- [26] M.S.W. Lau and P.A. Sermon, J. Chem. Soc. Chem. Commun. (1978) 891.
- [27] D.H. Lenz and W.C. Conner Jr., J. Catal. 104 (1987) 288.
- [28] K.S. Kim and M.A. Barteau, Langmuir 4 (1988) 533.